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ABSTRACT: Lanczos-type algorithms are well   known as effective i t e r a t i v e  methods for solving non-symmetric of 

systems of linear equation (SPL). However, they   are fragile when i n v o l v i n g  a large number of iterations, which i s  

well-known as a breakdown phenomenon.  This study introduces modelling Lanczos algorithms through 

interpolation and extrapolation tools, to avoid t h e  use of a large number of iterations and hence avoiding the 

breakdown. An iterate  generated by embedding this model  into Lanczos algorithms (and  hence  called  embedding 

interpolation and  extrapolation model  in Lanczos-types Algorithms, or EIEMLA), is then  used  to restart the  new  

algorithm.  The whole p r o c e d u r e  is named restarting EIEMLA (REIEMLA). This restarting framework aims to 

accelerate the convergence of Lanczos-type algorithms.   Theoretical and n u me r i ca l  results are presented and are 

compared with other existing restarting strategies in Lanczos algorithms.  Empirically, restarting from the iterate 

g en e ra t ed  by the model function performs better than other existing restarting discussed in [8] and [14]. 
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INTRODUCTION 

Lanczos-type algorithms are well known as an 

effective iterative methods for solving non-symmetric 

systems of linear equations (SPL). These algorithms 

was first proposed by Brezinski and his team, [1,2,3], 

by using  theory  of orthogonal polynomials (FOP’s).   

Theoretically, for solving   dimensions of SPL, we 

need   number of iterations to get a good solution. 

Practically, however, we often use more than   

iterations. This is because the computational errors are 

accumulated in every iteration of the algorithms. On the 

other hand, breakdown in Lanczos algorithms is also an 

unavoidable.  Therefore, a number of strategies are 

already developed  to enhance the performance of 

Lanczos-types algorithms such as the look-ahead 

strategy, [4,5], which  is also called  the  Method of 

Recursive Zoom  (MRZ), the look-around strategy, [10, 

11], typically try  to get over  and/or around the non-

existing orthogonal polynomials. Other strategies such 

as switching between Lanczos-type algorithms and 

restarting them have also been considered, [7, 8, 9].  

The later mentioned approaches are performing better 

than MRZ in terms of robustness, [1, 8]. The 

improvement of existing restarting in Lanczos-type 

algorithms, has been investigated in [14], by 

considering three different points for restarting. The 

recent work [15], dis cussed modelling in Lanczos-type 

algorithms for the same purpose.  The resulting model 

is called embedding interpolation and extrapolation in 

Lanczos-types algorithms (EIEMLA). In this study, we 

suggest restarting from the point generated by the 

EIEMLA aiming at to find a better point to restart a 

Lanczos-type algorithm so that we would obtain a better 

result.  This result is then compared with the existing 

restarting strategies in Lanczos-type algorithms. The 

rest of this paper is organized as  

follows. In Section 2, we look at some background 

theories related to the derivation of EIEMLA. 

Restarting of EIEMLA and its implementation are 

discussed in Section 3. Some numerical results and 

comparison of this restarting against the existing 

restarting strategies, i.e. RLLastIt, RLMinRes and 

RLMedVal are discussed in Section 4. Lastly, we 

conclude this study in Section 5. 

 

2. Derivation of EIEMLA 

We follow [15] to derive the embedding interpolation 

and extrapolation in Lanczos-types algorithms 

(EIEMLA). Suppose we run a Lanczos-type algorithm, 

[1, 3], for k iterations, where    .  Note, it is 

intentionally and  pre-emptively stopped before  the  

algorithm breaks  down.  We then consider the 

generated iterates which form a sequence S = {x1, x2, . . 

, xk }. Let xm, be the iterate with the lowest residual 

norm, ‖  ‖where m ≤ k. Assume that some good 

iterates, namely those with small residual norms, 

concentrate in interval [m − j, k], for some integer j. Set 

   {                },                     (1) 

which  is a subset  of S. Write the components of each 

iterate  in S as 
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    {    
   

       
    

     
   

} namely, each 

vi contains all of the it h entries  of iterates xl , for l = 

m − j, m − j + 1, · · · , k, and  for i = 1, 2, · · · , n.  Thus,  

we find  a function which terpolates each set of vi’s 

using  PCHIP  interpolant, [10,11]. We assume that 

each sequence of      
   

,       
   

     
   

 is monotonic 

and  

convergent for some j and i = 1, 2, …, n, to its limit, 

[13], i.e. 

        
   

   
   

 .                     (3) 

Let t be elements in R. Set  

 
Using  PCHIP to interpolate each  wi, for i = 1, 2, . . . , 

n, yields functions fi.  As it is a regular interpolation 

process  in R3  then  for some t = m − j, m − j + 1, . . . , 

k, fi satisfy 

 
For instance, 

 
Since we use an appropriate interpolant to interpolate 

the data, i.e. the one  that  preserves the  monotonicity 

of the  data,  then  the  extrapolation based on this 

interpolation process  enables  us to get the next point 

outside of the  range.   It means that if we calculate   

        with                      , where         
   , then we obtain 

 

where each   
   

 has a similar property as   
   

 in (5). In 

other words, if the sequence of   
   

 is monotonically 

increasing/decreasing, so is   
   

. Thus arranging 

vector  , with   
   

 being the ith entries of the vector, 

yields an approximate solution of the system.  

Since PCHIP captures the persistent pattern of the data, 

then this process also enables us to generate a new 

sequence of solutions, obviously by considering the 

weakness of extrapolation method. In other words, we 

can still choose the integer s such that the residual 

norms of the iterates gener- ated by this process, xk+1, 

xk+2, . . ., xs are small enough. It is expected that these 

iterates replace the”missing” iterates not generated by 

the Lanczos- type algorithm due  to breakdown. The 

algorithm of EIEMLA is given in Algorithm 1. 

 

 
 

2.1. Formal Basis of EIEMLA 
As above mentioned, the sequences generated by the 

Lanczos-type algorithm have the property of 

monotonicity.   Since we consider PCHIP which 

preserves monotonicity, [6], to interpolate the 

sequences, we can assume that points returned by the 

function, are also monotonic.   This leads to the theorem 

below which guarantees the monotonicity property of 

sequences generated by Lanczos-type algorithms. 

Theorem 1. Given a sequence {  } of k iterates 

generated by a Lanczos-type algorithm, sequences of 

  
   

 , i = 1, 2, … , n, and k = 1, …, namely the entries of 

k iterates, are monotonic. 

The next theorem is to show that the distance between 

two vectors and      and         is sufficiently small, 

where      is iterate generated by Lanczos process, and 

       is iterate generated by EIEMLA. Theorem 2. Let 

           be theiterates generated by Orthodir 

algorithm. Let        be a vector returned by EIEMLA 

as explained in the previous section. Then, for some   

    ,  

                

where ‖ ‖ is the Euclidean norm. 
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Finally we have a theorem which guarantees the 

residual norm of the iterate generated by EIEMLA is 

always smaller or equal to that of the iterate generated 

by the Lanczos-type algorithms considered. 

 

Theorem 3. Let             be the iterates generated 

by Orthodir algorithm. Let 

       be a residual vector which corresponds to the 

iterate generated by EIEMLA. 

Then, 

 
Note here, all of the proofs of theorems above can be 

seen in [159]. 

 

3. Restarting EIEMLA 

There are some different points to restart a Lanczos 

algorithm which lead some different algorithms, as 

mentioned in [14]. In this particular restarting, called 

REIEMLA, we take theiterate generated by EIEMLA as 

a starting point. It is as illustrated in Figure 1. First, a 

Lanczos-type algorithm generates the 

sequence          , with assuming it breaks after k 

iterations. The sequence is then regressed to get a model 

function. Using this function, we generate a solution, 

      
   

 . Next, we restart the Lanczos-type algorithm 

from this solution to get another sequence of iterates. 

We regress again to get        
   

. It is continued until 

      
   

 is achieved, and the corresponding residual 

norm is less than the given tolerance. 

By a theorem in [14], we know that the restarting 

framework allows Lanczos-type algorithms to generate 

better iterates. This is expected here, too. This restarting 

approach is described as Algorithm 2.   

 

 
 

 
4. Numerical Results Using Sparse Matrix: 

Experiments have been carried out using five 

implementations of REIEMLA’s, including restarting 

EIEM (REIEM) Orthores, REIEM Orthodir, REIEM 

Orthomin, REIEM A8B8, and REIEM A12. The aim is 

to look at the performance of these EIEMLA’s when 

they are put on the restarting framework. Particularly, 

we will look at the robustness and the efficiency of each 

algorithm. The problems solved range from 1000 to 

400000 variables. Overall, REIEM A8B8 found more 

accurate approximate solutions. This can be seen in 

Table (1), particularly for dimensions between 60000 

and 400000. It also showed the best performance in 

term of efficiency; it consistently took the shortest time 

on all problems. The second best performance came 

from REIEM Orthodir. The rest of methods had mixed 

performances on both accuracy and efficiency. Figures 

2, 3, 4, and 5 represent the residual norms of all 

solutions generated by all considered algorithms for 

dimensions ranging from 1000 to 8000, 9000 to 70000, 

and 80000 to 400000, respectively. We can see there, 

that most of figures show that the red, blue, pink, and 

yellow curves, corresponding to REIEM Orthodir, 

REIEM Orthores, REIEM A8B8, and REIEM A12, 

respectively, have a similar shape. The green curve, on 

the other hand, which represents REIEM Orthomin, 

appears on top of the other curves for some problems, 

such as on Figures from 4(c) to 5(d). It means that it 

failed to reach the prescribed convergence tolerance. 
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4.1. Comparison of REIEMLA, RLastIt, RLMinRes, 

and RLMedVal 

This section compares REIEMLA and other restarting of 

Lanczos-type algorithms discussed in [14], including 

RLLastIt, RLMinRes, and RLMedVal. The aim of this 

study is to look at which starting point improves the 

performance of Lanczos-type algorithms, in this case, 

we used Orthodir algorithm which is one of Lanczos-

types. In addition, the stability of RLLastIt, RLMinRes, 

and RLMedVal will be checked for problems ranging 

from 10000 to 1000000 dimensions, which are 

significantly larger than those in [8]. All of the results 

are recorded in Table 2 and visualized in Figures 6, 7, 8, 

9, 10, 11, dan 12. According to the results, REIIEMLA 

performed the best than other restarting strategies, 

though it is the slowest. According to Table 2, overall, 

for      , REIEM Orthodir produced more accurate 

approximate solutions than RLLastIt Orthodir, 

RLMedVal Orthodir, and RLMinRes Orthodir. 

However, it was the slowest. RLMinRes Orthodir was 

the second best for accuracy and it was the fastest. 

RLLastIt Orthodir, on the other  

hand, was the worst overall. It still suffered from 

breakdown (see dimensions 20000, 60000, 90000 

column). Yet, for dimensions 1000000, RLLastIt 

Orthodir produced an approximate solution with a 

residual norm of 299.2. RLMedVal Orthodir was the 

third best on accuracy. The computational time of 

RLMedVal Orthodir is rather low, compared to that of 

REIEM Orthodir. 
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The comparison of REIEM Orthodir, RLLastIt 

Orthodir, RLMedVal Orthodir, and RLMinRes 

Orthodir for different values of   can be seen in some 

figures above mentioned. Figures in the first column 

show the behaviour of 4 restarting for      , while 

those in the second column show that for    . We 

can see in the first column that for most problems, the 

red curve, which represents RLLastIt Orthodir, is on 

top. It indicates that this restarting failed to achieve 

approximate solutions with the required  

tolerance. On the second column, in contrast, the red 

curve along with other curves hit small residual norm 

 

5. CONCLUSION 

Restarting from the iterate generated by EIEMLA’s 

(REIEMLA’s) have been implemented. This kind of 

restarting uses an iterate generated by EIEMLA as a 

starting point which is different from either those 

investigated in [8] or in [14], which is a novelty of 

our works. We can conclude here that REIEMLA 

produced the best results as can be seen in Table 2 of 

Section 4.1, so they do agree with the theory 

expanded in Section 3. This means that the method is 

comparatively better in terms of quality of solution. 

However, given the time overheads required to find 

the regression model and restarting, both REIEMLA 

is not efficient in terms of computing time. 
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