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ABSTRACT: Lanczos-type algorithms are well known as effective iterative methods for solving non-symmetric of
systems of linear equation (SPL). However, they are fragile when involving a large number of iterations, whichis
well-known as a breakdown phenomenon. This study introduces modelling Lanczos algorithms through
interpolation and extrapolation tools, to avoid the use of a large number of iterations and hence avoiding the
breakdown. An iterate generated by embedding this model into Lanczos algorithms (and hence called embedding
interpolation and extrapolation model in Lanczos-types Algorithms, or EIEMLA), is then used to restart the new
algorithm. The whole procedure is named restarting EIEMLA (REIEMLA). This restarting framework aims to
accelerate the convergence of Lanczos-type algorithms. Theoretical and numerical results are presented and are
compared with other existing restarting strategies in Lanczos algorithms. Empirically, restarting from the iterate
generated by the model function performs better than other existing restarting discussed in [8] and [14].
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INTRODUCTION

Lanczos-type algorithms are well known as an
effective iterative methods for solving non-symmetric
systems of linear equations (SPL). These algorithms
was first proposed by Brezinski and his team, [1,2,3],
by using theory of orthogonal polynomials (FOP’s).
Theoretically, for solving n dimensions of SPL, we
need n number of iterations to get a good solution.
Practically, however, we often use more than n
iterations. This is because the computational errors are
accumulated in every iteration of the algorithms. On the
other hand, breakdown in Lanczos algorithms is also an
unavoidable. Therefore, a number of strategies are
already developed to enhance the performance of
Lanczos-types algorithms such as the look-ahead
strategy, [4,5], which is also called the Method of
Recursive Zoom (MRZ), the look-around strategy, [10,
11], typically try to get over and/or around the non-
existing orthogonal polynomials. Other strategies such
as switching between Lanczos-type algorithms and
restarting them have also been considered, [7, 8, 9].
The later mentioned approaches are performing better
than MRZ in terms of robustness, [1, 8]. The
improvement of existing restarting in Lanczos-type
algorithms, has been investigated in [14], by
considering three different points for restarting. The
recent work [15], dis cussed modelling in Lanczos-type
algorithms for the same purpose. The resulting model
is called embedding interpolation and extrapolation in
Lanczos-types algorithms (EIEMLA). In this study, we
suggest restarting from the point generated by the
EIEMLA aiming at to find a better point to restart a
Lanczos-type algorithm so that we would obtain a better
result. This result is then compared with the existing

restarting strategies in Lanczos-type algorithms. The
rest of this paper is organized as

follows. In Section 2, we look at some background
theories related to the derivation of EIEMLA.
Restarting of EIEMLA and its implementation are
discussed in Section 3. Some numerical results and
comparison of this restarting against the existing
restarting strategies, i.e. RLLastlt, RLMinRes and
RLMedVal are discussed in Section 4. Lastly, we
conclude this study in Section 5.

2. Derivation of EIEMLA

We follow [15] to derive the embedding interpolation
and extrapolation in Lanczos-types algorithms
(EIEMLA). Suppose we run a Lanczos-type algorithm,
[1, 3], for k iterations, where kK <n. Note, it is
intentionally and pre-emptively stopped before the
algorithm breaks down. We then consider the
generated iterates which form a sequence S = {Xy, X, . .
, Xk }. Let xm, be the iterate with the lowest residual
norm, |lry|lwhere m < k. Assume that some good
iterates, namely those with small residual norms,
concentrate in interval [m — j, K], for some integer j. Set

V= {Xm—jixm—j+1;"';xk}1 (1)
which is a subset of S. Write the components of each
iterate in S as

— [, @ (D) (D
U1 = {xm—j’xm—j+1"“'xk }
— [, @ (2) (2)
V2 = {xm—j’xm—j+1"“'xk } (2)
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— [, .0
Un = {xm—j'xm—j+1'

)

e, X }— namely, each

Vi contains all of the it h entries of iterates x| , for | =
m—jm—j+1,- -,k and fori=1,2, - -,n. Thus,
we find a function which terpolates each set of vi’s
using PCHIP interpolant, [10,11]. We assume that

@ ® @ ;
each sequence of x,° . x," . -, X, Is monotonic
and

convergent for some jand i =1, 2, ..., n, to its limit,
[13], i.e.

limy_, o x,((i) =x® . )
Let t be elements in R. Set

(N . (1) (1)
{(rm—;--‘m—} ")-(fm—jﬂ‘-‘m—j—l 'I) ----- (rk-‘k" )}

..... AL 4)

o n) ; (n) (n)
Wn = {(IHF—}--‘P’.‘I—} ')-(rm—jﬂ‘-‘m—j—l ) ----- (H‘-‘k' )}

Using PCHIP to interpolate each wi, fori=1,2,...,
n, yields functions fi. As it is a regular interpolation
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process in R3 then forsomet=m-—j,m—j+1,...,
k, fi satisfy

.l (1) .

filth~x”  fori=1.2,...n. (5)

For instance,
- \ [J':]
film=j) )

film=j+ 1) real) (6)

filk)=x!  fori=1.2...,n.
Since we use an appropriate interpolant to interpolate
the data, i.e. the one that preserves the monotonicity
of the data, then the extrapolation based on this
interpolation process enables us to get the next point
outside of the range. It means that if we calculate
fi(t *)with t =€ [k + 1,s] < R,where s = k +
1, then we obtain

fori=12.....n. (7)

i

(1)

where each x,ﬁi) has a similar property as xt(i) in (5). In
other words, if the sequence of xt(‘) is monotonically
increasing/decreasing, so fl). Thus arranging
vectorx,, with xﬁl) being the ith entries of the vector,
yields an approximate solution of the system.

Since PCHIP captures the persistent pattern of the data,
then this process also enables us to generate a new
sequence of solutions, obviously by considering the
weakness of extrapolation method. In other words, we
can still choose the integer s such that the residual
norms of the iterates gener- ated by this process, Xy.1,
., Xs are small enough. It is expected that these

is x

Xk+21 L
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iterates replace the”missing” iterates not generated by
the Lanczos- type algorithm due to breakdown. The
algorithm of EIEMLA is given in Algorithm 1.

Algorithm 1 The EIEMLA method
1: Initialization.  Choose xg and y. Set rp =b—Axy, Yo =¥, and zg = r¢.
2 Fix the number of iterations to, say, k, and the tolerance, ¢, to £ — 13
and run a Lanczos-type algorithm.
3 if [[rg|| <€ then
4 The solution is obtained
5. Stop
6:

. else

Collect all k vector solutions as in S.

Choose some j such that m— j <k.

9. Setw;asin(4),fori=1.2....,n.

1. Interpolate w; using PCHIP to get f;.

1. Choose t* € [m,s] C R, where s > m > k is an integer, and calculate

® N

fit*).
12 forg=12,....ldo
13 Arrange vectors
(A9)(r*9)
(H9)(t*9
xJI= & ).( ) ) ®)
(£?) (1)
where [ = length([m.s]).
14: Calculate the residual norms of (8) as follows
[l = [Ib—Ax,9]| )
15 end for
16: end if .
17. The solutions of the systems are x.(! x” ... x. .
1. Stop.

2.1. Formal Basis of EIEMLA

As above mentioned, the sequences generated by the
Lanczos-type algorithm have the property of
monotonicity. Since we consider PCHIP which
preserves monotonicity, [6], to interpolate the
sequences, we can assume that points returned by the
function, are also monotonic. This leads to the theorem
below which guarantees the monotonicity property of
sequences generated by Lanczos-type algorithms.

Theorem 1. Given a sequence {x;} of k iterates
generated by a Lanczos-type algorithm, sequences of
x,((l) ,i=1,2,...,n and k=1, ..., namely the entries of
k iterates, are monotonic.

The next theorem is to show that the distance between
two vectors and x4 and X,,,q4¢; IS sufficiently small,
where x, ., is iterate generated by Lanczos process, and
Xmoder 1S iterate generated by EIEMLA. Theorem 2. Let
X1,X,, -+, X, be theiterates generated by Orthodir
algorithm. Let x,,,,4¢; b€ a vector returned by EIEMLA
as explained in the previous section. Then, for some
>0,

|xi+] — Xmodel <E

Y

(10)

where [|-]] is the Euclidean norm.
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Finally we have a theorem which guarantees the
residual norm of the iterate generated by EIEMLA is
always smaller or equal to that of the iterate generated
by the Lanczos-type algorithms considered.

Theorem 3. Let x,,X,,:*,X, be the iterates generated
by Orthodir algorithm. Let

moder D€ a residual vector which corresponds to the
iterate generated by EIEMLA.

Then,

| rmc;u"c’é’“ = [] L Oll] ”IL”

Note here, all of the proofs of theorems above can be
seen in [159].

(11)

3. Restarting EIEMLA

There are some different points to restart a Lanczos
algorithm which lead some different algorithms, as
mentioned in [14]. In this particular restarting, called
REIEMLA, we take theiterate generated by EIEMLA as
a starting point. It is as illustrated in Figure 1. First, a
Lanczos-type algorithm generates the
sequencex,, X,, -:-, X, With assuming it breaks after k
iterations. The sequence is then regressed to get a model
function. Using this function, we generate a solution,

xggdel . Next, we restart the Lanczos-type algorithm

from this solution to get another sequence of iterates.

We regress again to get xfjgdel. It is continued until
X%)aez is achieved, and the corresponding residual

norm is less than the given tolerance.

By a theorem in [14], we know that the restarting
framework allows Lanczos-type algorithms to generate
better iterates. This is expected here, too. This restarting
approach is described as Algorithm 2.
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Figure 1 The process of REIEMLA on SLE's
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Algorithm 2 REIEMLA

1: Initialization. Choose Xgand y. Setrp =b—Axg, yp =y, and zp =r1y.

2 Fix the number of iterations to, say k, and the tolerance, €, to 1£—13.

3 Run EIEMLA for k iterations. Obtain a sequence of iterates
{Xk41,X652,...,Xs ], where s >> k + 1, and calculate the residual norms
of these iterates.

4: Compute the minimum of the residual norms, name it as || Iy e |-

5 if ||Tpoqer | < € then

&  The solution is obtained, i.e. the iterate which is associated with this

residual norm, name it as X, 4,/

7. Stop.

& else

% Initialize the algorithm with

X0 = Xmodel
y = b-Axg
;. Goto3.
11: end if
12 Take X040 as the approximate solution.
13 Sfop,
4. Numerical Results Using Sparse Matrix:
Experiments have been carried out using five

implementations of REIEMLA’s, including restarting
EIEM (REIEM) Orthores, REIEM Orthodir, REIEM
Orthomin, REIEM A8B8, and REIEM A12. The aim is
to look at the performance of these EIEMLA’s when
they are put on the restarting framework. Particularly,
we will look at the robustness and the efficiency of each
algorithm. The problems solved range from 1000 to
400000 variables. Overall, REIEM A8B8 found more
accurate approximate solutions. This can be seen in
Table (1), particularly for dimensions between 60000
and 400000. It also showed the best performance in
term of efficiency; it consistently took the shortest time
on all problems. The second best performance came
from REIEM Orthodir. The rest of methods had mixed
performances on both accuracy and efficiency. Figures
2, 3, 4, and 5 represent the residual norms of all
solutions generated by all considered algorithms for
dimensions ranging from 1000 to 8000, 9000 to 70000,
and 80000 to 400000, respectively. We can see there,
that most of figures show that the red, blue, pink, and
yellow curves, corresponding to REIEM Orthodir,
REIEM Orthores, REIEM A8B8, and REIEM Al2,
respectively, have a similar shape. The green curve, on
the other hand, which represents REIEM Orthomin,
appears on top of the other curves for some problems,
such as on Figures from 4(c) to 5(d). It means that it
failed to reach the prescribed convergence tolerance.
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Table 1: REIEMLA's results on SLE's of different dimensions (8§ = 0.2).
Dim REIEM Orthodir REIEM Orthores REIEM Orthomin REIEM AgBy REIEM A,
| Wil | TG [ocks | Jretal | 70 [ooes | Tresal | 70 Jocks | Traal | T Jodes | Trmeal | TG |ode
1000 [ L49E-13| 27754 7 |T4T8E-14| 27204 7 LOOSSE-13| 24289 7 |SSIBE-14[ 23128 7 |1.1678E-13 28407 7
2000 | 1.8022E-13 47902 5 1.3016E - 13 47256 5 9.7620E — 14 47388 L 8.9780E - 14 45694 5 26154E-13 48302 5
3000 | 9.5558E —14 8.2847 6 1.9059E - 13 8.1635 6 1.8697E —13 8.2978 6 1.384E - 13 7.8779 6 6.6643E - 13 83374 6
4000 | 1.5314E-13 11.1859 6 9.0616E — 13 11.0619 6 1.5536E - 12 11.2805 6 87363E-14 10.6054 6 2464TE-13 11.2323 6
5000 |8.8714E 14 13.8305 6 LTNIE-13 13.6183 6 1.1540E - 13 13.6849 6 B.9805E - 14 13.3218 6 1.5963E - 13 13.9249 6
6000 | 9.3580E - 14 16.6379 6 25422E-13 16.4647 6 1.3951E-13 16.5377 6 1.1735E-13 149176 6 45703E-13 16.6322 6
7000 | 8.8991E - 14 215419 7 9.4050E - 14 21.915 7 BTI40E—14| 214752 7 1.0280E - 13 164627 6 1.1965E - 13 217140 7
8000 | 7.0246E — 14 26.1215 7 1.7535E-13 26.6733 7 9.9997E - 14 27.6451 7 1.0766E - 13 2441 7 4.0340E -13 28.7450 7
9000 | 1.274E-13 347815 6 23651E-13 345213 6 27370E-13 364677 6 93160E - 14 32.6551 6 1.3555E-13 345217 6
10000 | L1T70E 13|  43.3406 7 18M3E-13| 429775 7 |855E-14| 422M1 7 | 1LISME-13| 366519 7 |13061E-13| 437932 7
20000 | 1.3307E-13| 78.4202 6 25346E-13 | 755837 6 13043E 13 76.6608 6 9.6495E - 14| 741202 6 2.1849E - 13 77.1374 6
30000 | 7.0624E 14 [ 13807E 402 | 8 [13414E—13[13828E+02| 8 [12435E—13|11271E+02| 8 |13085E—13|12985E+02| 8 |B3067E—14(14636E+02| 8
40000 | 87169E — 14 | 1.6587E + 02 7 2.0691E — 13 | 1.6405E + 02 7 L1421E — 13 | 1.6513E + 02 7 1.5730E - 13 | 1.2543E + 02 7 1.3643E — 13 | 1.6427E + 02 7
50000 | 8.8856E — 14 | 2.0350E +02 7 1.9407E — 13 | 2.0388E + 02 7 1.1142E — 13 | 2.0585E + 02 7 11251E - 13 | 1.7703E + 02 7 1.4125E — 13 | 2.0489E + 02 7
60000 | 1.0238E —13 | 22516E +03 | 6 |25612E—13|22548E+03| 6 |ST4SBE—13|1801SE+03| 6 |57665E—14(17265E+03| 6 |1.0136E—-13(268901E+03| 6
70000 | 1.1291E —13 | 2.3504E + 03 6 25633E — 13 | 2.3568E + 03 6 23774E —07 | 2.8314E + 03 6 54051E —14 | 2.3320E + 03 6 8.5146E — 12 | 9.6349E + 02 6
80000 | 1.1291E —13 | 3.7782E + 02 6 55238E 13 | 3.7811E + 02 6 9.5690E — 09 | 3.7915E + 02 6 6.9059E — 14 [ 3.8115E + 02 6 25610E —13 | 3.779E + 02 6
90000 | 1.2560E — 13 | 4.1922F +02 7 3.5634E — 13 | 4.1968E + 02 7 44348 4.2066E +02 6 5.5320E — 14 | 4.2106E +02 7 4.6976E — 11 | 42059E + 02 7
100000 | 6.7572E — 14 | 1.9632E +03 6 27009E — 13 | 1.9678E + 03 6 22545E -07 | 23319E +03 6 1.8846F — 14 | 2.0884E + 03 6 20253E—-11 | 1.7952E + 03 6
200000 | 1.5334E —13 | 3.0293E + 03 6 24225E - 12 | 3.0356E + 03 6 6.3091E —09 | 2.8280F + 03 6 1.8846F — 14 | 27299E + 03 6 1.8905E — 13 | 3.1738E + 03 6
300000 | 3.5587TE-13 [ 1L419E4+03 | 6 | 13904E—11(13917E+03| 6 [29327E-08|14026E+03| 6 [9.1562E—14|14166E+03 | 6 [34152E—13| 1445E+03( 6
400000 | 1.0917E — 13 | 3.0293E + 03 7 28929E — 13 | 2.1188E + 03 7 09752 21174E 4+ 03 7 6.3743E — 14 | 2.0909E + 03 7 1.7095E — 11 | 2.1298E + 03 7
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4.1. Comparison of REIEMLA, RLastlt, RLMinRes,
and RLMedVal
This section compares REIEMLA and other restarting of
Lanczos-type algorithms discussed in [14], including
RLLastlt, RLMinRes, and RLMedVal. The aim of this
study is to look at which starting point improves the
performance of Lanczos-type algorithms, in this case,
we used Orthodir algorithm which is one of Lanczos-
types. In addition, the stability of RLLastlt, RLMinRes,
and RLMedVal will be checked for problems ranging
from 10000 to 1000000 dimensions, which are
significantly larger than those in [8]. All of the results
are recorded in Table 2 and visualized in Figures 6, 7, 8,
9, 10, 11, dan 12. According to the results, REIIEMLA
performed the best than other restarting strategies,
though it is the slowest. According to Table 2, overall,

for § = 0.2, REIEM Orthodir produced more accurate
approximate solutions than RLLastlt Orthodir,
RLMedVal Orthodir, and RLMinRes Orthodir.
However, it was the slowest. RLMinRes Orthodir was
the second best for accuracy and it was the fastest.
RLLastlt Orthodir, on the other

hand, was the worst overall. It still suffered from
breakdown (see dimensions 20000, 60000, 90000
column). Yet, for dimensions 1000000, RLLastlt
Orthodir produced an approximate solution with a
residual norm of 299.2. RLMedVal Orthodir was the
third best on accuracy. The computational time of
RLMedVal Orthodir is rather low, compared to that of
REIEM Orthodir.
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Table 2: Comparison of RLLastlt, RLMinRes, RLMedVal, and REIEMLA on SLE's.

ISSN 1013-5316; CODEN: SINTE

3331

Dim RLLastlt RLMedVal RLMinRes REIEMLA
n [Fias | T(s) cycles* | [[medvat]| Tis) cycles* ([ min | Tis) cycles® | [rmodet]| T(s) cycles*

10000 | 1.0O197E+03 1.6417 8 8.295FE - 14 3.4869 8 6.3812E - 14 1.6030 8 THBE-14| 468517 [
20000 NaN 17079 7 NaN £.2981 7 | 1.3631E-13 31302 7 | 13TTRE-13| 834271 7
30000 | 1.1431E-05( 45129 § | 1.0587E-13| 91 8 |56TTIE-14| 336974 8 | TO6ME-14 | 1381E+02| 8
40000 | 1.0034E —13 5.1161 7 13915E-13 11.6754 7 1.3337E-13 15.0736 7 10416E —13 | 1.46T1E+02 7
50000 | 1.9219E-11 5.6047 7 3.0603E-13 11.9592 7 1.2119E-13 49212 7 8.8856E — 14 | 1.61SBE+02 7
60000 NaN 27684 2 NaN 16.8510 2 934TIE-14 5.77120 8 94736E—14 | 2.1146E+02 8
70000 | B.6199E—-04 |  7.1957 7 | 5A830E-13| 161976 7 |1LUTMHE-13| 63761 7 | BESTOE-14 |22149E+02| 7
80000 | 1.0629E —13 83211 § | 13325E-13| 201473 8 | 13564E—13| 6.5041 8 | BT32E-14 |2BITRE+02| 8
90000 NaN 15.0871 4 | 22863E-13| 224101 § |6GT62IE-14| 9.1351 & | Q0221E—14 | 31943E+02| 8
100000 | 84367E—06( 19.8926 6 2T951E-12 |  38.6984 6 1L445TE-13 17.7201 6 6.75T2E — 14 | 4.6079E 402 [
200000 | 2.237T1E-07|  53.0010 7 JO3TAE—-13 | 929957 7 LOZME—-13 | 424940 7 TINTE—14 | 1.0452E4+03 7
300000 | 3.6436E—05|  84.0492 8 | 297TI0E—-13 | 136ME+02| & [OTI95E-14 | 69.0020 8 | STTISE-14 | 17206E+03| 8
400000 | 1.O269E—06 | 1.252TE+02 | 21 | 40323E—13 |20462E+02| 21 | LOITOE—13 | LO26SE+02 | 21 | 6G2733E—14 |22000E+03| 21
500000 4.0003 L2533E+02| 7 | 491B1E—13 |220M4E+02| 7 | LIOZBE—13 |1.OS62E+02| 7 |T5I20E—14|25T73E+03| 7
600000 | 23792E—08 | 2I64E+02 | 8 | 33380E-13 |33367TE+02| & | LISME-13 |16RITE+02| 8 |6GUT0IE—14|35818E+03| &8
700000 | B.8101E—04 | 9.3461E+02 8 4.8528E 13 | 1.1483E+03 8 1.4392E —13 | 1.3074E +4 8 9.67197E—14 | 1.1499E+02 8
800000 0.0018 1.000SE +03 8 JA252E-13 | LM3IE+03 8 1.3660F — 13 | 8.7973E+02 8 9.027T4E — 14 | 1.3T90E +04 8
900000 | 1.7343E—-06 | 29700E+02 | 9 | 35132E—13 |49551E+02| 9 | LOI90E—-13 |20792E+02| 9 | 7B603E—14 |5650E+03| 9
1000000 | 2992002 | 34414E+02| 10 | 27200E—13 [5T312E+02| 10 | LI225E—13 |27021E+02| 10 |T7.8631E—14 |57520E+03| 10
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The comparison of REIEM Orthodir, RLLastlt
Orthodir, RLMedVal Orthodir, and RLMinRes
Orthodir for different values of § can be seen in some
figures above mentioned. Figures in the first column
show the behaviour of 4 restarting for § = 0.2, while
those in the second column show that for § = 5. We
can see in the first column that for most problems, the
red curve, which represents RLLastlt Orthodir, is on
top. It indicates that this restarting failed to achieve
approximate solutions with the required

tolerance. On the second column, in contrast, the red
curve along with other curves hit small residual norm

5. CONCLUSION
Restarting from the iterate generated by EIEMLA’s
(REIEMLA’s) have been implemented. This kind of
restarting uses an iterate generated by EIEMLA as a
starting point which is different from either those
investigated in [8] or in [14], which is a novelty of
our works. We can conclude here that REIEMLA
produced the best results as can be seen in Table 2 of
Section 4.1, so they do agree with the theory
expanded in Section 3. This means that the method is
comparatively better in terms of quality of solution.
However, given the time overheads required to find
the regression model and restarting, both REIEMLA
is not efficient in terms of computing time.
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